Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Wei Liu, ${ }^{\text {a }}$ Li-Hua Huo, ${ }^{\text {a }}$ Shan Gao ${ }^{\mathbf{a} *}$ and Seik Weng $\mathbf{N g}^{\text {b }}$
${ }^{\text {a }}$ College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and
${ }^{\text {b }}$ Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.127$
Data-to-parameter ratio $=13.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Hexaaquacobalt(II) benzene-1,4-dioxydiacetate

The cation and anion of the title compound, $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)$, lie on different inversion sites. The $\mathrm{Co}^{\text {II }}$ atom shows octahedral coordination. The cations and anions are linked by hydrogen bonds into a three-dimensional network structure.

Comment

A number of metal derivatives of benzene-1,2-dioxyacetic acid have been structurally characterized (McCann et al., 1994; Smith et al., 1987; Smith et al., 1991), but complexes of the related benzene-1,4-dioxyacetic acid are less well documented. The present study of the title hexaaquacobalt(II) complex, (I) (Fig. 1), follows a recent study of a bis(phen-anthroline)-chelated manganese(II) salt, whose benzene-1,4dioxyacetate anion interacts indirectly, through the uncoordinated and coordinated water molecules, with the metal center (Gao et al., 2004).

The $\mathrm{Co}^{\text {II }}$ atom is six-coordinate in an octahedral environment. The anion is almost planar (r.m.s. deviation $=0.008 \AA$); the planarity forces the ether linkage $(\mathrm{C} 2-\mathrm{O} 3-\mathrm{C} 3)$ to open to $117.3(2)^{\circ}$ (idealized angle $=109.5^{\circ}$). The cation and anion both lie on inversion sites, and they are linked by hydrogen bonds into a three-dimensional network structure (Table 2 and Fig. 2).

Experimental

Benzene-1,4-dioxyacetic acid was prepared by the nucleophilic reaction of chloroacetic acid and hydroquinone under basic conditions, following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). Cobalt diacetate trihydrate

Figure 1
A view of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)$, with displacement ellipsoids drawn at the 30% probability level.

Received 9 March 2004

Accepted 15 March 2004
Online 24 March 2004
$(4.76 \mathrm{~g}, 20 \mathrm{mmol})$ and benzene-1,4-dioxyacetic acid ($9.04 \mathrm{~g}, 40 \mathrm{mmol}$) were dissolved in water and the pH was adjusted to 6 with $0.1 M$ sodium hydroxide. Pink crystals separated from the filtered solution after several days. Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{CoO}_{12}$: C $30.70, \mathrm{H}$ 5.15%; found: C 30.48 , H 5.28\%.

Crystal data

$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)$
$M_{r}=391.19$
Triclinic, $P \overline{1}$
$a=5.568(2) \AA$
$b=6.366(2) \AA$
$c=11.620(3) \AA$
$\alpha=102.21(2)^{\circ}$
$\beta=95.59(2)^{\circ}$
$\gamma=106.68(1)^{\circ}$
$V=380.1(2) \AA^{\circ}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.709 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1613 \\
& \quad \text { reflections } \\
& \theta=3.6-27.4^{\circ} \\
& \mu=1.19 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, pink } \\
& 0.36 \times 0.28 \times 0.18 \mathrm{~mm}
\end{aligned}
$$

Data collection

Rigaku R-AXIS RAPID	1722 independent reflections
\quad diffractometer	1625 reflections with $I>2 \sigma(I)$
ω scans	$R_{\text {int }}=0.018$
Absorption correction: multi-scan	$\theta_{\max }=27.5^{\circ}$
$\quad(A B S C O R ;$ Higashi, 1995)	$h=-7 \rightarrow 7$
$T_{\min }=0.674, T_{\max }=0.814$	$k=-7 \rightarrow 8$
3456 measured reflections	$l=-14 \rightarrow 15$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.127$
$S=1.08$
1722 reflections
124 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
A packing diagram of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)$. Hydrogen bonds are indicated by dashed lines.

C-bound H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ (aromatic) and $0.97 \AA$ (aliphatic), and $\left.U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ in the riding-model approximation. The H atoms of water molecules were refined with $\mathrm{O}-\mathrm{H}$ and $\mathrm{H} \cdots \mathrm{H}$ distance restraints $[0.85$ (1) and $1.39(1) \AA$, respectively] and $U(\mathrm{H})=1.5 U_{\mathrm{eq}}(\mathrm{O})$. The largest peak in the final difference Fourier map is $1.12 \AA$ from atom Co 1 .

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Educational Committee Foundation of Heilongjiang Province, Heilongjiang University and the University of Malaya.

References

Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m113-m115.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
McCann, M., Devereux, M., Cardin, C. \& Convery, M. (1994). Polyhedron, 13, 221-226.
Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Smith, G., Bott, R. C., Sagatys, D. S. \& Kennard, C. H. L. (1991). Polyhedron, 10, 1565-1568.
Smith, G., O'Reilly, E. J. \& Kennard, C. H. L. (1987). Polyhedron, 6, 871-879.

