Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## Ji-Wei Liu,<sup>a</sup> Li-Hua Huo,<sup>a</sup> Shan Gao<sup>a</sup>\* and Seik Weng Ng<sup>b</sup>

<sup>a</sup>College of Chemistry and Chemical Technology, Heilongjiang University, Harbin 150080, People's Republic of China, and <sup>b</sup>Department of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia

Correspondence e-mail: shangao67@yahoo.com

#### Key indicators

Single-crystal X-ray study T = 293 K Mean  $\sigma$ (C–C) = 0.004 Å R factor = 0.044 wR factor = 0.127 Data-to-parameter ratio = 13.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. The cation and anion of the title compound,  $[Co(H_2O)_6](C_{10}H_8O_6)$ , lie on different inversion sites. The  $Co^{II}$  atom shows octahedral coordination. The cations and anions are linked by hydrogen bonds into a three-dimensional network structure.

Hexaaquacobalt(II) benzene-1,4-dioxydiacetate

Received 9 March 2004 Accepted 15 March 2004 Online 24 March 2004

# Comment

A number of metal derivatives of benzene-1,2-dioxyacetic acid have been structurally characterized (McCann *et al.*, 1994; Smith *et al.*, 1987; Smith *et al.*, 1991), but complexes of the related benzene-1,4-dioxyacetic acid are less well documented. The present study of the title hexaaquacobalt(II) complex, (I) (Fig. 1), follows a recent study of a bis(phenanthroline)-chelated manganese(II) salt, whose benzene-1,4dioxyacetate anion interacts indirectly, through the uncoordinated and coordinated water molecules, with the metal center (Gao *et al.*, 2004).



The Co<sup>II</sup> atom is six-coordinate in an octahedral environment. The anion is almost planar (r.m.s. deviation = 0.008 Å); the planarity forces the ether linkage (C2-O3-C3) to open to 117.3 (2)° (idealized angle = 109.5°). The cation and anion both lie on inversion sites, and they are linked by hydrogen bonds into a three-dimensional network structure (Table 2 and Fig. 2).

## **Experimental**

Benzene-1,4-dioxyacetic acid was prepared by the nucleophilic reaction of chloroacetic acid and hydroquinone under basic conditions, following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). Cobalt diacetate trihydrate



Figure 1

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

# metal-organic papers

(4.76 g, 20 mmol) and benzene-1,4-dioxyacetic acid (9.04 g, 40 mmol) were dissolved in water and the pH was adjusted to 6 with 0.1M sodium hydroxide. Pink crystals separated from the filtered solution after several days. Analysis calculated for C<sub>10</sub>H<sub>20</sub>CoO<sub>12</sub>: C 30.70, H 5.15%; found: C 30.48, H 5.28%.

Z = 1

 $D_x = 1.709 \text{ Mg m}^{-3}$ 

Cell parameters from 1613

0.36  $\times$  0.28  $\times$   $0.18~\rm{mm}$ 

Mo  $K\alpha$  radiation

reflections

 $\theta = 3.6-27.4^{\circ}$  $\mu = 1.19 \text{ mm}^{-1}$ 

T = 293 (2) K

Prism, pink

#### Crystal data

[Co(H<sub>2</sub>O)<sub>6</sub>](C<sub>10</sub>H<sub>8</sub>O<sub>6</sub>)  $M_r = 391.19$ Triclinic, P1 a = 5.568 (2) Åb = 6.366(2) A c = 11.620(3) Å  $\alpha = 102.21 \ (2)^{\circ}$  $\beta = 95.59 \ (2)^{\circ}$  $\gamma = 106.68 (1)^{\circ}$  $V = 380.1 (2) \text{ Å}^3$ 

## Data collection

| Rigaku R-AXIS RAPID                    | 1722 independent reflections           |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 1625 reflections with $I > 2\sigma(I)$ |
| $\omega$ scans                         | $R_{\rm int} = 0.018$                  |
| Absorption correction: multi-scan      | $\theta_{\rm max} = 27.5^{\circ}$      |
| (ABSCOR; Higashi, 1995)                | $h = -7 \rightarrow 7$                 |
| $T_{\min} = 0.674, \ T_{\max} = 0.814$ | $k = -7 \rightarrow 8$                 |
| 3456 measured reflections              | $l = -14 \rightarrow 15$               |

#### Refinement

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_o^2) + (0.0883P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.044$ | + 0.2735P]                                                 |
| $wR(F^2) = 0.127$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.08                        | $(\Delta/\sigma)_{\rm max} = 0.001$                        |
| 1722 reflections                | $\Delta \rho_{\rm max} = 1.28 \text{ e} \text{ Å}^{-3}$    |
| 124 parameters                  | $\Delta \rho_{\rm min} = -0.39 \text{ e } \text{\AA}^{-3}$ |
| H atoms treated by a mixture of |                                                            |
| independent and constrained     |                                                            |
| refinement                      |                                                            |

### Table 1

Selected geometric parameters (Å, °).

| Co1-O1W<br>Co1-O2W                                                                                                                     | 2.067 (2)<br>2.090 (2)                              | Co1–O3W                                                                                          | 2.149 (2)                          |
|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------|
| $\begin{array}{c} 01W - Co1 - 01W^{i} \\ 01W - Co1 - 02W \\ 01W - Co1 - 02W^{i} \\ 01W - Co1 - 03W \\ 01W - Co1 - 03W^{i} \end{array}$ | 180<br>92.2 (1)<br>87.8 (1)<br>87.7 (1)<br>92.3 (1) | $\begin{array}{c} O2W-Co1-O2W^{i}\\ O2W-Co1-O3W\\ O2W-Co1-O3W^{i}\\ O3W-Co1-O3W^{i} \end{array}$ | 180<br>93.1 (1)<br>86.9 (1)<br>180 |

Symmetry code: (i) 1 - x, 1 - y, 1 - z.

## Table 2

Hydrogen-bonding geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                                                                                                                                                           | D-H                                                                                                 | $H \cdot \cdot \cdot A$                                              | $D \cdots A$                                                               | $D - \mathbf{H} \cdot \cdot \cdot A$                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------|
| $\begin{array}{c} 01W - H1W1 \cdots O2 \\ 01W - H1W2 \cdots O1^{ii} \\ 02W - H2W1 \cdots O3W^{iii} \\ 02W - H2W2 \cdots O2^{iv} \\ 03W - H3W1 \cdots O2^{v} \\ 03W - H3W2 \cdots O1^{ii} \end{array}$ | $\begin{array}{c} 0.85 (3) \\ 0.84 (3) \\ 0.85 (3) \\ 0.85 (3) \\ 0.84 (3) \\ 0.84 (3) \end{array}$ | 2.00 (3)<br>1.88 (3)<br>2.12 (3)<br>1.91 (3)<br>1.88 (3)<br>2.05 (3) | 2.814 (3)<br>2.700 (3)<br>2.957 (3)<br>2.740 (3)<br>2.724 (3)<br>2.863 (3) | 159 (4)<br>163 (3)<br>168 (3)<br>165 (3)<br>172 (3)<br>163 (3) |

Symmetry codes: (ii) x - 1, y, z; (iii) 1 + x, y, z; (iv) 2 - x, 1 - y, 1 - z; (v) x - 1, y - 1, z.



#### Figure 2

A packing diagram of [Co(H<sub>2</sub>O)<sub>6</sub>](C<sub>10</sub>H<sub>8</sub>O<sub>6</sub>). Hydrogen bonds are indicated by dashed lines.

C-bound H atoms were placed in calculated positions [C-H = 0.93 Å (aromatic) and 0.97 Å (aliphatic), and  $U(H) = 1.2U_{eq}(C)$  in the riding-model approximation. The H atoms of water molecules were refined with O-H and H···H distance restraints [0.85 (1) and 1.39 (1) Å, respectively] and  $U(H) = 1.5U_{eq}(O)$ . The largest peak in the final difference Fourier map is 1.12 Å from atom Co1.

Data collection: RAPID-AUTO (Rigaku Corporation, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Educational Committee Foundation of Heilongjiang Province, Heilongjiang University and the University of Malaya.

## References

- Gao, S., Liu, J.-W., Huo, L.-H., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m113-m115
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- McCann, M., Devereux, M., Cardin, C. & Convery, M. (1994). Polyhedron, 13, 221-226.
- Mirci, L. E. (1990). Rom. Patent No. 07 43 205.
- Rigaku Corporation (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Smith, G., Bott, R. C., Sagatys, D. S. & Kennard, C. H. L. (1991). Polyhedron, 10. 1565-1568.
- Smith, G., O'Reilly, E. J. & Kennard, C. H. L. (1987). Polyhedron, 6, 871-879.